Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We report a detailed study of high-order harmonic generation (HHG) in helium. When comparing predictions from a single-active-electron model with those from all-electron simulations, such as the ATTOMESA code and R-matrix-with-time-dependence method, which can include different numbers of states in the close-coupling expansion, it seems imperative to generate absolute numbers for the HHG spectrum in a well-defined framework. While qualitative agreement in the overall frequency dependence of the spectrum, including the cutoff frequency predicted by a semiclassical model, can be achieved by many models in arbitrary units, only absolute numbers can be used for benchmark comparisons between different approaches.more » « less
-
We report on the x-ray absorption spectra (XAS) and x-ray magnetic circular dichroism (XMCD) of a series of NiFe2O4 (Ni ferrite) films grown on symmetry matched substrates and measured in two geometries: out-of-plane and near in-plane. The Ni ferrite films, grown by pulsed laser deposition, are epitaxial and the substrates used (ZnGa2O4, CoGa2O4, MgGa2O4, and MgAl2O4) introduce a systematic variation in the lattice mismatch between the substrate and the film. Modeling of the XAS and XMCD spectra, both measured with the surface sensitive total electron yield mode, indicates that the Ni2+ cations reside on the octahedrally coordinated lattice sites in the spinel structure. Analyses of the Fe XAS and XMCD spectra are consistent with Fe3+ cations occupying a subset of the octahedral and tetrahedral sites in the spinel oxide lattice with the addition of a small amount of Fe2+ located on octahedral sites. The Ni2+ orbital to spin moment ratio (μℓ/μs), derived from the application of XMCD sum rules, is enhanced for the substrates with a small lattice mismatch relative to NiFe2O4. The results suggest a path for increasing the orbital moment in NiFe2O4 by applying thin film growth techniques that can maintain a highly strained lattice for the NiFe2O4 film.more » « less
-
Wegrowe, Jean-Eric; Razeghi, Manijeh; Friedman, Joseph S. (Ed.)
-
Following up on a previous paper on two-color photoionization of Ar(3p) [D. Bharti et al., Phys. Rev. A 103, 022834 (2021)], we present measurements and calculations for a modified three-sideband (3-SB) version of the reconstruction of attosecond beating by interference of two-photon transitions (RABBITT) configuration applied to He(1s). The 3-SB RABBITT approach allows us to explore interference effects between pathways involving different orders of transitions within the continuum. The relative differences in the retrieved oscillation phases of the three sidebands provide insights into the continuum-continuum transitions. The ground state of helium has zero orbital angular momentum, which simplifies the analysis of oscillation phases and their angle dependence within the three sidebands. We find qualitative agreement between our experimental results and the theoretical predictions for many cases but also observe some significant quantitative discrepancies.more » « less
An official website of the United States government

Full Text Available